

The New Cedar River and Turtle Creek Hydrologic and Hydraulic Model

Model Roll Out Meeting January 10, 2012

- 1. Introduction and Background
- 2. Building the model and the GIS Data Files
- 3. Ensuring Model Accuracy (Calibration)
- 4. Possible Model Uses

Our presentation will be placed on the Cedar River Watershed District's web site

Background

- CRWD was established in 2007
- Purpose: Reduce flooding and improve water quality throughout the watershed
- Need to understand how the water flows through a watershed
- Needed to establish an accurate existing conditions flow model

Existing Conditions Flow Model

- Project was funded by CRWD, TCWD, MPCA, and Hormel
- The model will be a tool for watershed districts, counties, townships, MnDOT, and SWCDs
- Used to design projects and/or evaluate impacts of potential projects on flood reduction

Building the Model and the GIS Data Files

Cedar River and Turtle Creek Watersheds

What goes into a model?

- Subwatersheds
- Land use information
- Soils information
- Topography
- Rainfall Depths/Distributions
- Flow control devices (bridges, culverts)

Subwatershed Divides

Land Use – to evaluate percent impervious and flow resistance

Soil Type – to determine infiltration

Topography – to determine drainage patterns and speed of runoff

Rainfall Depth and Duration

Existing Flow Control Structures

Using the GIS Inventory – Flow Control Structures

Using the GIS Inventory – Structure Photos

Structure ID: FP18 Structure Type: Culvert Subwatershed: Cedr111 <u>View Data Sheet</u>

C

Using the GIS Inventory – Survey Data Sheets

LIMITED DETAIL STUDY HYDRAULIC STRUCTURE DATA WORKSHEET

	Date	7-6-06	Stream Name					
e	Time	9:40 A.M.	Road Name	540 A	J			
-	Taken By	AKP	Structure Number	FP 18				
	County	Mouran	GPS Point Number					
	Type of Structure	Bridge	Culvert Weir	Dam	Other			
	Hydraulic Width (ft)	58	DS side of structure)					
	Approximate Skew	90° (Angle btwn structure CL & road CL. 0-90°. $90^\circ = -1$						
	Railing Height (ft)	(Height of railing on bridge or culvert)						
	Deck Thickness (ft)	(Distance from top of road to top of culvert or low chord of bridge)						

Culverts: (See back of sheet for descriptions, diagrams, and sketch space if required)

	Barrel #1	Barrel #2	Barrel #3	Barrel #4	Barrel #5
Barrel Type	ACP Box				
Inlet Type	CONCRATE WINGWALLS	/			
Rise or Diameter (ft)	G	-			
Span (ft)	10				
Invert Elevation (ft) Upstream/Downstream	229.84 229.90	1	/	/	1
% Blocked	NONE				

Using the GIS Inventory – Structure Photos

Using the GIS Inventory – Survey Data Sheets

Now the model is built, but how accurate is it?

Ensuring Model Accuracy (Calibration)

- First step with model building is to input suggested starting value within a published range of values for model hydrologic parameters
 - Infiltration Rates

(example range: 1in/hr to 5in/hr -> starting point 3in/hr)

Depression storage and vegetation interception

(example range 0.1 in to 0.5 in -> starting point 0.2)

- NEXRAD rainfall data obtained for two storms (intensity and amount) – September 2004, September 2010
- Run the model using the published starting values and recorded NEXRAD rainfall

Ensuring Model Accuracy (Calibration)

- Then compare model results against actual measured flow gage data at various points in the watershed
- The published starting values typically need adjustments to make the modeling results more closely match the measured data
- These model adjustments are typically known as "calibration"

Model Adjustments

- We continue to adjust model inputs within the published range
- After each adjustment, modeled data is compared to measured flow gage data
- Additional adjustments are made until modeled flow data accurately resembles measured flow data

Five Gage Locations

Measured Data (Monitored Data)

Calibrated Results

Calibrated Results – with and without tile simulated

Gage 48027001 (Turtle Creek) – September 2004 Stage

Model Applications

- Designing flood reduction and water quality improvement projects
- Help townships, counties, and MnDOT design and evaluate new road crossings and their proposed changes
- Simulate land use changes or development impacts
- Determine the effect of upstream watershed changes on flood elevations anywhere in watershed
- Aid in FEMA "No Rise" determinations in areas where FEMA DFIRMs exist
- Aid in levee certifications

Example 1: Red Rock Township Road Crossing (250th Street)

Example 1: Red Rock Township Road Crossing (250th Street)

Example 1: Red Rock Township Road Crossing (250th Street)

- 250th Street was overtopping during large storm events
- Construction options discussed with township
 - Double culvert capacity
 - Raise the road
 - Restrict culvert capacity and raise the road and potentially see flood reduction benefits downstream
- Model results showed that road raise only was the best option.
- The analysis took about 10 hours
- Cost for this evaluation was about \$1,000

Example 2: Wetland Restoration along Murphy Creek

- Mower SWCD wanted to evaluate four projects' impacts on flood reduction along Murphy Creek
- Restoration involved breaking tile, adding storage capacity, and restoration of the cropland to native grasses

Example 2: Wetland Restoration along Murphy Creek

Example 2: Wetland Restoration along Murphy Creek

BEFORE – soybean field

AFTER – restored wetland and native prairie

Example 2: <u>Wetland Restoration along Murphy Creek</u>

Example 2: <u>Wetland Restoration along Murphy Creek</u>

Example 2: <u>Wetland Restoration along Murphy Creek</u>

Example 2: Site Restoration along Murphy Creek

- Volume of runoff from the watershed was reduced by 8% from 460 acre-ft to 420 acreft during the 100-year storm event.
- Peak runoff rate in Murphy Creek was reduced by about 10% (approximately 40 cfs reduction) during the 100-year storm event
- The analysis took 7 hours per site
- Cost for this evaluation was \$800 per site or \$3,200 for all four sites

Questions?

Cedar River Watershed District Web Site <u>www.cedarriverwd.org</u>